Lalimo.ru

Система методов менеджмента

Основные понятия теории игр. Классификация игр

Предметом теории игр являются такие ситуации, в которых важную роль играют конфликты и совместные действия.

Конфликт может возникнуть в результате различия целей которые отражают не только несовпадающие интересы разных сторон, но и многочисленные интересы одного и того же лица. Например, ЛПР, формирующее экономическую политику фирмы, обычно преследует разнообразные цели, выдвигая противоречивые требования, предъявляемые к ситуации (рост объемов производства, повышение доходов, снижение экологической нагрузки и т. п.). Конфликт также может быть результатом действия тех или иных «стихийных сил», то есть внешнего окружения. Поэтому математическая модель, адекватно отражающая: любое социально-экономическое явление, должна отражать присущие ему черты конфликта, то есть описывать:

- множество заинтересованных сторон; в теории игр они называются игроками;

- возможные действия каждой из сторон, которые называются стратегиями, или ходами;

- интересы сторон, представляемые функциями выигрыши платежной матрицей

В теории игр предполагается, что функции выигрыша и множество стратегий, доступных каждому из игроков, общеизвестны то есть каждый игрок знает свою функцию выигрыша и набор I имеющихся в его распоряжении стратегий, а также функции выигрыша и стратегии остальных игроков, и в соответствии с : информацией организовывает свое поведение.

Различные виды игр можно классифицировать по различным признакам. К ним относятся:

- число игроков;

- число стратегий;

- свойства функции выигрыша;

- возможность предварительных переговоров и взаимодействия между игроками в ходе игры.

В зависимости от числа игроков различают игры с двумя, тремя и более участниками. В принципе возможны также игры с бесконечным числом игроков. По количеству стратегий различают конечные и бесконечные игры. В конечных играх игроки располагают конечным числом возможных стратегий (например, игра «орел — решка»). Сами стратегии в конечных играх часто называют чистыми стратегиями. Соответственно, в бесконечных играх игроки имеют бесконечное число возможных стратегий (например, в ситуации продавец-покупатель при установлении цены на товар и его количества).

По свойствам функции выигрыша различают:

- антагонистические игры, или игры с нулевой суммой; в данном случае выигрыш одного игрока равен проигрышу другого, то есть налицо прямой конфликт между игроками;

- игры с постоянной разностью, в которых игроки и выигрывают, и проигрывают одновременно, так что им выгодно действовать сообща;

- игры с ненулевыми суммами, где имеются и конфликты, и согласованные действия.

В зависимости от возможности предварительных переговоров между игроками различают кооперативные и некооперативные игры. Игра называется кооперативной, если до начала игры игроки образуют коалиции и принимают взаимообязывающие соглашения о своих стратегиях. Игра, в которой игроки не могут координировать свои стратегии, называются некооперативной. Очевидно, что все антагонистические игры могут служить примером некооперативных игр. Примером кооперативной игры может служить ситуация образования коалиций в парламенте для принятия решения путем голосования.